This case study looks at 9 patients who developed cardiac metastases, a tricky situation on which very little data is currently available. We hope that by describing 9 cases, this will provide an easily accessible road map for clinicians around the world when this difficult situation arises. In many cases, the combination of limited ‘palliative’ radiation with immune therapy proved beneficial.
Cystic fibrosis (CF) is the most common lethal genetic disease among Caucasians, primarily affecting epithelial tissues of the lung and gut. Mutations in a single gene, the cystic fibrosis transmembrane conductance regulator (CFTR), are responsible for this disease. Whether a physiological defect exists in the immune system of CF patients has remained controversial. A chloride ion transport defect has been described in human CF-derived lymphocytes; however, it has not been possible to detect CFTR mRNA in lymphocytes. We report here that normal human B-lymphoblasts display whole cell Cl- conductances induced by calcium-mediated pathways, volume regulation, and cAMP which are equivalent to currents described in epithelial cells. B-lymphoblasts from CF-affected humans demonstrated defective Cl- conductance regulation by cAMP but preserved regulation by calcium-mediated and volume regulation mechanisms. CFTR involvement in cAMP regulation of Cl- conductance in lymphocytes is further supported by our demonstration of the presence of appropriately spliced CFTR mRNA segments in human B and T lymphocytes as detected by an optimized reverse-transcription and polymerase chain reaction approach. The identity of the amplified products was confirmed by hybridization to CFTR-specific probes and DNA sequencing. Furthermore, the 3′-end of the gene was found in a T cell cDNA library. We conclude that CFTR mRNA is expressed in lymphocytes, consistent with the cAMP regulation of chloride transport present in normal lymphocytes but defective in CF-derived lymphocytes.