Our team based in Seattle conducted a comprehensive review including evolving trends in the management of Merkel cell carcinoma (MCC). This summary covers key decision points, including recommended work-up during initial diagnosis, treatment options for MCC when it’s in one place or has spread, management of recurrent MCC, and new treatments that are showing promise with fewer side effects and good results. This review gives valuable information on how to handle MCC overall and emphasizes new methods that are effective and less toxic on patients.
BACKGROUND
Merkel cell polyomavirus (MCPyV) is present in approximately 80% of human Merkel cell carcinomas (MCCs). A previous in silico prediction suggested MCPyV encodes a microRNA (miRNA) that may regulate cellular and viral genes.
OBJECTIVES
To determine the presence and prevalence of a putative MCPyV-encoded miRNA in human MCC tumors.
STUDY DESIGN
Over 30 million small RNAs from 7 cryopreserved MCC tumors and 1 perilesional sample were sequenced. 45 additional MCC tumors were examined for expression of an MCPyV-encoded mature miRNA by reverse transcription real-time PCR.
RESULTS
An MCPyV-encoded mature miRNA, “MCV-miR-M1-5p”, was detected by direct sequencing in 2 of 3 MCPyV-positive MCC tumors. Although a precursor miRNA, MCV-miR-M1, had been predicted in silico and studied in vitro by Seo et al., no MCPyV-encoded miRNAs have been directly detected in human tissues. Importantly, the mature sequence of MCV-miR-M1 found in vivo was identical in all 79 reads obtained but differed from the in silico predicted mature miRNA by a 2-nucleotide shift, resulting in a distinct seed region and a different set of predicted target genes. This mature miRNA was detected by real-time PCR in 50% of MCPyV-positive MCCs (n = 38) and in 0% of MCPyV-negative MCCs (n = 13).
CONCLUSIONS
MCV-miR-M1-5p is expressed at low levels in 50% of MCPyV-positive MCCs. This virus-encoded miRNA is predicted to target genes that may play a role in promoting immune evasion and regulating viral DNA replication.